Posts in Startups

OpenAI vs. DeepSeek: The Business Models Race

In just a few months, generative artificial intelligence has gone from a laboratory curiosity to the next big technological frontier. Behind the excitement surrounding solutions such as ChatGPT (developed by OpenAI, backed by Microsoft) and DeepSeek (a Chinese startup aiming to rival the American giants), lie colossal challenges: profitability, sovereignty, workforce training, and even climate impact. This chronicle offers an overview of the key figures in AI, then explores three economic scenarios likely to shape the global landscape of this revolution.


1. Key Figures: What They Mean for Households and Businesses

To better grasp the stakes, the table below presents three main themes—productivity gains, employment, and energy costs—along with their real-life implications for individuals and companies.

Productivity Gains: An Inexhaustible Gold Mine?Jobs: 25% “Disrupted,” 12 Million “Created”Energy Costs and Cloud Spending: The Great Challenge
What the Figures Say– McKinsey (2023) anticipates up to $4.4 trillion per year in added value from generative AI.
– Across the EU, this could theoretically support a 2% GDP increase if widely adopted.
– Goldman Sachs (2023): up to 25% of jobs “disrupted” by 2030 (administration, customer support).
– World Economic Forum (2023): 12 million new positions focused on AI systems design and maintenance.
– Synergy Research (2023): $500 billion in cloud investments by 2026, driven by AI.
– Training a model (e.g., GPT-4) can emit hundreds of tons of CO₂ (University of Massachusetts, 2023).
Points of Comparison– $4.4 trillion is more than Germany’s annual GDP (around $4 trillion).
– For an SME, potential benefits could be seen in accounting, customer relations, and automating repetitive tasks.
– 25% is one quarter of the workforce in key sectors (accounting, telemarketing, etc.).
– 12 million new jobs is almost the active population of countries like Belgium or Greece.
– $500 billion is more than double France’s total annual budget for Education and Research.
– The carbon footprint of training a single AI model can equal thousands of long-haul flights.
ImplicationsFor households: potential drop in certain service costs (insurance, banking, legal advice), as AI can reduce operational expenses.
For businesses: need to invest in staff training and IT infrastructure to capitalize on these gains.
For households: risk of unemployment for vulnerable profiles but opportunities for younger, data-savvy professionals.
For businesses: retraining and new professions (AI consultants, “prompt engineers,” etc.).
For households: if servers increasingly consume energy, electricity bills or service fees (online hosting, for instance) could rise over time.
For businesses: sustainability becomes a major factor (cost and brand image), prompting a push to reduce data center consumption.

2. From Promising Numbers to Economic Models: The Necessary Transition

The data above highlights the vast potential of generative AI while revealing significant disparities. Much like Amazon in its early days, neither OpenAI nor DeepSeek has found the holy grail of profitability yet, despite massive investments. One relies on platform effects (OpenAI is strongly tied to Microsoft Azure), while the other leans on cost-efficiency and government support (DeepSeek and the Chinese market).

In an ecosystem where data centers consume hundreds of billions of dollars and enterprise adoption may be slower than predicted, the central question becomes: how can generative AI be monetized effectively? The table showcases the magnitude of possible gains, but also the financial, human, and environmental costs. Recent tech history (Google, Facebook, etc.) reminds us that business models often emerge empirically, shaped by trial and error as well as partnerships.

In this vibrant context, three economic scenarios stand out—each offering a distinct path to turn innovation into sustainable revenue while addressing concerns of sovereignty, competition, and environmental accountability.


3. Three Economic Scenarios for the OpenAI-DeepSeek Rivalry

Scenario A: The “Google-Style” Advertising Model

  • Principle: Provide free or freemium versions, leverage user attention, and monetize via targeted advertising (or user data sales).
  • OpenAI might thus strengthen ChatGPT’s integration with search engines (e.g., Bing) or social media.
  • DeepSeek, backed by Beijing, could favor a model less reliant on advertising, possibly state-subsidized to ensure data sovereignty and security.

Scenario B: The “Premium Licensing” and B2B Model

  • Principle: Reserve advanced versions (GPT-5, GPT-6, etc.) for clients able to pay high subscription fees, such as banks, insurers, and large industrial groups.
  • OpenAI would cover infrastructure costs by charging for exclusive access to its most powerful models.
  • DeepSeek, for its part, might offer turnkey solutions to strategic national sectors (banks, hospitals, government agencies), capitalizing on an ecosystem less open to American providers.

Scenario C: Technological Breakthrough and Cost Reduction

  • Principle: Simultaneously, advancements in AI hardware (dedicated chips) or training optimization (quantization, model distillation) could drastically reduce energy consumption.
  • Democratization Effect: Much like personal computers in the 1990s, declining unit costs would open generative AI to a wider range of players (SMEs, emerging countries), lowering entry barriers and pushing OpenAI and DeepSeek to stand out via product innovation rather than sheer infrastructure capabilities.

A Revolution to Be Invented

Between promises of productivity and risks of polarization (impacting employment and resources), generative AI finds itself at a turning point for the global economy. OpenAI and DeepSeek are its most publicized faces, yet they only represent the tip of a vast movement affecting every sector and raising fundamental questions: Who will finance the transition? How will the benefits be distributed? What rules will govern the geostrategic and environmental facets of AI adoption?

The numbers speak to a major economic opportunity, but the history of tech pioneers (Amazon, Google, Microsoft…) shows that profitability rarely follows a simple or rapid path. The scenarios outlined here illustrate the diversity of possible approaches—each with its pros and cons. As AI becomes embedded in our daily lives, this Sino-American rivalry underscores the need to craft, sometimes from scratch, a sustainable model that is both profitable and socially responsible.

Main References

  1. McKinsey (2023).
    The Economic Potential of Generative AI.
    https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/the-economic-potential-of-generative-ai-the-next-productivity-frontier
  2. Goldman Sachs (2023).
    Generative AI Could Raise Global GDP by 7%.
    https://www.goldmansachs.com/insights/pages/generative-ai-could-raise-global-gdp-by-7-percent.html
  3. Synergy Research (2023).
    Cloud Market Reports.
    https://www.synergyresearchgroup.com/
  4. World Economic Forum (2023).
    Future of Jobs Report.
    https://www.weforum.org/reports
  5. University of Massachusetts (2023).
    Estimating CO₂ Emissions of LLMs (Energy and Policy Considerations for Deep Learning).
    https://arxiv.org/abs/1906.02243
  6. OECD (2024).
    SMEs and the Adoption of AI.
    https://www.oecd.org/going-digital/smes-and-the-adoption-of-ai/
  7. Reuters (2025).
    DeepSeek and Its Disruptive AI Model.
    https://www.reuters.com/technology/artificial-intelligence/what-is-deepseek-why-is-it-disrupting-ai-sector-2025-01-27/

DeepSeek’s $6M AI Revolution: How It Outpaces GPT-4

There are moments in history when the rules of the game change, and they do so unexpectedly. DeepSeek, a modest Chinese startup founded in 2023, has achieved the impossible: challenging the giants of artificial intelligence with a model that is revolutionary, open source, and… affordable. This is not just a technical innovation but a fundamental disruption of Silicon Valley’s dominance.


A Direct Challenge to OpenAI

DeepSeek R1, their first reasoning AI model, was designed with a clear ambition: to rival OpenAI’s GPT-4. But what’s truly astonishing is not just its performance—it’s the ridiculously low cost in comparison.

Consider GPT-4, OpenAI’s flagship model, which required over $600 million to train. In contrast, DeepSeek R1 was developed with just $6 million, or 1/100th of the cost. And that’s not all: while OpenAI charges more than $100 per million tokens, DeepSeek R1 delivers the same performance for under $4.

This is no longer just a difference—it’s a chasm. But DeepSeek didn’t stop there. Unlike GPT-4, their model is open source, with a permissive license, allowing anyone to access, modify, or deploy it freely.


A Market in Panic

DeepSeek’s announcement didn’t just stir investors—it caused a genuine shockwave across technology markets. Companies like NVIDIA have reportedly lost over $500 billion in market capitalization, as concerns grow about the viability of expensive GPUs in a new era where AI training can be done more economically.

Silicon Valley, long regarded as the uncontested leader in AI, now finds itself on the defensive. DeepSeek R1, described by some as the « Sputnik moment for AI, » is shifting the strategic advantage toward China.


A User Experience That Delivers

Early users of DeepSeek R1 report remarkable performance. Where the model excels is in its ability to provide transparent reasoning, a domain where even OpenAI’s models sometimes struggle. The model explains its reasoning steps, opening up new possibilities for applications in fields like law, medicine, and education.

However, some users note that DeepSeek R1 still lags slightly in tasks requiring high nuance or creativity, such as literary writing. That said, the fact that it is open source could accelerate its refinement by the community.


A Technological and Geopolitical Revolution

Beyond the technical innovation, DeepSeek represents a significant geopolitical shift. China is proving that it can not only catch up in artificial intelligence but also set new industry standards.

But this also raises questions:

  • How will the West respond? A widespread adoption of DeepSeek’s technologies could reshape global AI governance.
  • What does this mean for emerging countries? With such reduced costs, nations previously excluded from the AI race could position themselves as new players.

A Disruption Worth Watching

DeepSeek R1 is not just a model; it’s a paradigm shift. It pushes the global tech community to rethink how AI models are built, shared, and used. This is not just a technological challenge but also a reevaluation of the economic and geopolitical structures that have shaped AI so far.

The big question now is simple: can Silicon Valley reinvent itself? The answer will unfold in the coming months, or perhaps weeks.


Sources

Entrepreneuriat tech & IT : Statistiques sur les startups

Dans le cadre de mes travaux en tant que consultant pour le projet T.I.E., financé par l’Union Européenne, j’ai mené en 2022, une étude approfondie sur l’efficacité de l’écosystème de l’entrepreneuriat technologique et numérique (ECOTECH) au Cameroun. Cette étude avait pour objectif de cerner les facteurs déterminants pour la réussite des startups dans ce secteur, d’évaluer les obstacles et de proposer des recommandations concrètes pour améliorer la performance de cet écosystème.


Un Écosystème Jeune, mais Fragile

Les résultats révèlent un écosystème en phase de démarrage, marqué par un fort potentiel mais de nombreuses insuffisances structurelles. Voici quelques chiffres clés issus de l’étude :

  • 69,74% des startups interrogées se considèrent inefficaces, souvent freinées par des difficultés administratives, un manque de professionnalisme et des activités annexes non productives.
  • 51,3% des startups évoluent dans l’informel, ce qui complique leur accès à des opportunités comme les exonérations fiscales ou les financements structurés.
  • Malgré des efforts de l’État (comme la loi de finances 2021, qui exonère certaines startups de taxes pendant 5 ans), 87,2% des startups déclarent ne pas bénéficier directement des mesures gouvernementales.

L’étude met également en avant un écosystème très concentré dans le secteur tertiaire, où 80,3% des startups se consacrent à la conception de logiciels et au développement d’applications. Ces entreprises emploient en moyenne 3 personnes à temps plein et 4 à temps partiel, mais peinent à atteindre la rentabilité : 65,81% d’entre elles ne couvrent pas leurs charges grâce à leurs revenus.


L’Importance des Structures d’Accompagnement

Les incubateurs jouent un rôle central dans l’ECOTECH, mais leur impact est limité par des ressources financières restreintes et un accès réduit aux startups. Parmi les résultats :

  • 33,33% des startups ont bénéficié des services d’un incubateur, avec une durée moyenne d’incubation de 6,5 mois.
  • Ces services sont jugés efficaces à 63,5%, notamment pour le lobbying (32,4%) et l’accès à des espaces de travail (25,7%).
  • Toutefois, 70,7% des services offerts par les incubateurs ne sont pas rémunérés, ce qui fragilise leur modèle économique.

Les startups affiliées à un incubateur présentent des caractéristiques spécifiques : elles sont généralement formelles, dirigées par un entrepreneur diplômé et bénéficient davantage des exonérations fiscales. Cela souligne l’importance de renforcer le soutien aux structures d’accompagnement pour améliorer la durabilité des startups.


Des Recommandations Structurées pour un Impact Durable

Pour remédier aux défis identifiés, l’étude propose 6 axes stratégiques :

  1. Renforcer les infrastructures
    • Augmenter le taux de couverture en 3G et 4G (actuellement de 2,7 kbit/s par utilisateur, contre 11,2 kbit/s en moyenne en Afrique subsaharienne).
    • Développer des espaces de travail partagés pour réduire les coûts élevés liés à la location, signalés par 43,6% des startups comme un frein majeur.
  2. Améliorer le cadre réglementaire
    • Créer un statut semi-formel pour les startups (conditionné par l’inscription dans un incubateur), leur offrant un accompagnement personnalisé vers la formalisation. Cela répondrait aux attentes de 51,3% des startups encore informelles.
  3. Adapter les financements
    • Développer des fonds d’amorçage via des plateformes de financement participatif et des institutions comme la BCPME, car 99% des startups n’ont pas accès au crédit bancaire.
  4. Renforcer les compétences technologiques
    • Intégrer des formations sur les technologies de pointe (intelligence artificielle, cloud computing, etc.), des domaines encore peu exploités par les startups camerounaises.
  5. Soutenir les incubateurs
    • Subventionner ces structures pour pérenniser leurs services, tout en mettant en place des micromarchés de digitalisation financés par l’État ou des ONG, où les startups et incubateurs collaboreraient sur des projets concrets.
  6. Améliorer la communication
    • Mieux informer les startups sur les mesures existantes, car 46,2% d’entre elles ne connaissent pas les exonérations fiscales mises en place.

Cette étude met en lumière le potentiel énorme de l’ECOTECH au Cameroun, tout en soulignant les ajustements nécessaires pour qu’il devienne un véritable levier de développement économique. Avec des infrastructures adaptées, un cadre réglementaire souple et des financements accessibles, les startups camerounaises peuvent jouer un rôle clé dans l’innovation et la croissance.


Continuez la lecture ici

L’article scientifique ici

N’hésitez pas à partager vos commentaires et à engager la discussion : l’amélioration de l’écosystème entrepreneurial est une responsabilité collective, et votre avis compte !

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

Tech & IT Entrepreneurship: Startup Statistics

As part of my work as a consultant for the T.I.E. project, funded by the European Union, I conducted an in-depth study in 2022 on the effectiveness of the technological and digital entrepreneurship ecosystem (ECOTECH) in Cameroon. The study aimed to identify the key success factors for startups in this sector, assess the obstacles, and propose concrete recommendations to enhance the ecosystem’s performance.

 

A Young but Fragile Ecosystem

The findings reveal an ecosystem in its early stages, marked by significant potential but also numerous structural weaknesses. Key statistics from the study include:

  • 69.74% of startups rate themselves as ineffective, often hindered by administrative challenges, lack of professionalism, and non-productive side activities.
  • 51.3% of startups operate informally, making it difficult for them to access opportunities such as tax exemptions or structured funding.
  • Despite efforts by the government, such as the 2021 Finance Law, which exempts some startups from taxes for five years, 87.2% of startups report not benefiting directly from these measures.
  • The ecosystem is heavily concentrated in the tertiary sector, with 80.3% of startups focusing on software design and application development. These companies employ an average of 3 full-time and 4 part-time employees but struggle with profitability: 65.81% fail to cover their expenses through revenue.

The Role of Support Structures

Incubators play a central role in ECOTECH, but their impact is limited by financial constraints and reduced accessibility for startups. The study highlights:

  • 33.33% of startups have used incubator services, with an average incubation period of 6.5 months.
  • These services are deemed 63.5% effective, particularly for lobbying (32.4%) and providing workspaces (25.7%).
  • However, 70.7% of incubator services are not monetized, weakening their economic sustainability.

Startups affiliated with incubators tend to be more formal, led by educated entrepreneurs, and benefit more from tax exemptions. This underlines the importance of strengthening incubator support to enhance startup sustainability.


Structured Recommendations for Lasting Impact

To address the challenges identified, the study outlines 6 strategic areas for improvement:

  1. Strengthening Infrastructure

    • Increase 3G and 4G coverage (currently 2.7 kbit/s per user, compared to 11.2 kbit/s on average in sub-Saharan Africa).
    • Develop shared workspaces to lower rental costs, identified by 43.6% of startups as a major obstacle.
  2. Improving the Regulatory Framework

    • Create a semi-formal status for startups (linked to incubator registration) to provide tailored support toward formalization. This would address the needs of the 51.3% of startups operating informally.
  3. Adapting Financing Options

    • Develop seed funds through crowdfunding platforms and institutions like BCPME, as 99% of startups lack access to bank loans.
  4. Enhancing Technological Skills

    • Offer training in emerging technologies (AI, cloud computing, etc.), which remain underutilized by Cameroonian startups.
  5. Supporting Incubators

    • Subsidize these structures and introduce digitalization micromarkets, funded by the government or NGOs, to ensure incubators and startups collaborate on practical projects.
  6. Improving Communication

    • Better inform startups about available measures, as 46.2% are unaware of the tax exemptions in place.

A Vision for the Future

This study highlights the immense potential of Cameroon’s ECOTECH while emphasizing the need for targeted improvements to make it a true driver of economic development. With adequate infrastructure, flexible regulations, and accessible financing, Cameroonian startups can play a key role in innovation and growth.


Continue Reading Here

Download the Full Scientific Article


Join the Conversation

Feel free to share your thoughts and engage in the discussion: improving the entrepreneurial ecosystem is a collective responsibility, and your input matters!